Symbio Corporation

Lepidoptera BAC Clones

Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera.

General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1-2, PBP-A-D) previously reported to form a complex arrayed in a conserved order in representative moths (superfamily Bombycoidea) and butterflies (Nymphalidae). Although our knowledge of lepidopteran genomes has increased greatly recently, the structure of the GOBP/PBP complex has been studied only for species that represent limited lineages of the highly diverged Ditrysia. To understand the evolution of this functionally important gene complex, we determined 69-149 kb genomic sequences that include GOBP2 and five PBP genes in three Ostrinia moths (Pyraloidea), O. nubilalis, O. furnacalis, and O. latipennis, using bacterial artificial chromosome (BAC) and fosmid clones. The structure of the GOBP2/PBP gene cluster was well conserved despite the different sex pheromone composition utilized by the three moths. Five expressed PBP genes in Ostrinia moths were the result of two duplications of PBP-A genes. Surprisingly, an allele containing a fusion gene between tandemly arrayed PBP-A genes was observed in O. nubilalis. We also revealed duplication and intra-chromosomal translocation of the GOBP1 gene in P. xylostella by fluorescence in situ hybridization (FISH) analysis. Additionally, we compared the structure of the GOBP/PBP gene complex of seventeen species covering six superfamilies and twelve families of the lepidopteran clade, Ditrysia, and found the gene order was basically conserved despite the frequent occurrence of lineage-specific gains, losses, inversions and translocations of these genes, compared with their neighboring genes. Our findings support the hypothesis that the structure of the GOBP/PBP gene complex was already established in the common ancestor of Ditrysia.


Isolation of BAC clones containing conserved genes from libraries of three distantly related moths: a useful resource for comparative genomics of Lepidoptera.

Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, n = 31, which are not closely related with each other or with the silkworm, Bombyx mori, (n = 28), the sequenced model lepidopteran. A total of 108-184 clones representing 101-182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH), as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.


Signatures of selection in loci governing major colour patterns in Heliconius butterflies and related species.

BACKGROUND
Protein-coding change is one possible genetic mechanism underlying the evolution of adaptive wing colour pattern variation in Heliconius butterflies. Here we determine whether 38 putative genes within two major Heliconius patterning loci, HmYb and HmB, show evidence of positive selection. Ratios of nonsynonymous to synonymous nucleotide changes (ω) were used to test for selection, as a means of identifying candidate genes within each locus that control wing pattern.
RESULTS
Preliminary analyses using 454 transcriptome and Bacterial Artificial Chromosome (BAC) sequences from three Heliconius species highlighted a cluster of genes within each region showing relatively higher rates of sequence evolution. Other genes within the region appear to be highly constrained, and no ω estimates exceeded one. Three genes from each locus with the highest average pairwise ω values were amplified from additional Heliconius species and races. Two selected genes, fizzy-like (HmYb) and DALR (HmB), were too divergent for amplification across species and were excluded from further analysis. Amongst the remaining genes, HM00021 and Kinesin possessed the highest background ω values within the HmYb and HmB loci, respectively. After accounting for recombination, these two genes both showed evidence of having codons with a signature of selection, although statistical support for this signal was not strong in any case.
CONCLUSIONS
Tests of selection reveal a cluster of candidate genes in each locus, suggesting that weak directional selection may be occurring within a small region of each locus, but coding changes alone are unlikely to explain the full range of wing pattern diversity. These analyses pinpoint many of the same genes believed to be involved in the control of colour patterning in Heliconius that have been identified through other studies implementing different research methods.


Convergent evolution in the genetic basis of Müllerian mimicry in heliconius butterflies.

The neotropical butterflies Heliconius melpomene and H. erato are Müllerian mimics that display the same warningly colored wing patterns in local populations, yet pattern diversity between geographic regions. Linkage mapping has previously shown convergent red wing phenotypes in these species are controlled by loci on homologous chromosomes. Here, AFLP bulk segregant analysis using H. melpomene crosses identified genetic markers tightly linked to two red wing-patterning loci. These markers were used to screen a H. melpomene BAC library and a tile path was assembled spanning one locus completely and part of the second. Concurrently, a similar strategy was used to identify a BAC clone tightly linked to the locus controlling the mimetic red wing phenotypes in H. erato. A methionine rich storage protein (MRSP) gene was identified within this BAC clone, and comparative genetic mapping shows red wing color loci are in homologous regions of the genome of H. erato and H. melpomene. Subtle differences in these convergent phenotypes imply they evolved independently using somewhat different developmental routes, but are nonetheless regulated by the same switch locus. Genetic mapping of MRSP in a third related species, the “tiger” patterned H. numata, has no association with wing patterning and shows no evidence for genomic translocation of wing-patterning loci.


Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies.

BACKGROUND
With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius.
RESULTS
Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales.
CONCLUSIONS
Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.


A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects.

A second-generation linkage map was constructed for the silkworm, Bombyx mori, focusing on mapping Bombyx sequences appearing in public nucleotide databases and bacterial artificial chromosome (BAC) contigs. A total of 874 BAC contigs containing 5067 clones (22% of the library) were constructed by PCR-based screening with sequence-tagged sites (STSs) derived from whole-genome shotgun (WGS) sequences. A total of 523 BAC contigs, including 342 independent genes registered in public databases and 85 expressed sequence tags (ESTs), were used.

Leave a Comment

Your email address will not be published.